75,409 research outputs found

    Multimode synthesis procedure for microwave filters based on thick inductive windows

    Get PDF
    For several types of microwave filters for space application it is important to manufacture hardware without tuning elements. For this to be possible, one needs a systematic procedure to codvert ideal elements, such as resonators and impedance inverters, into actual waveguide lengths and discontinuities. The situation is further complicated by the fact that waveguide discontinuities excite higher order modes that interacting with each other can have very strong effects. In this paper we first outline the theory behind a very efficient computer code for the simulation of microwave filters based on thick inductive windows. Then we describe in detail a step-by-step procedure that, based on the code developed, allows for the rapid design of this class of microwave filters without any tuning elements. Two actual examples of design are also discussed and comparisons presented between measurements and simulations

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    Microwave Components with MEMS Switches

    Get PDF
    RF MEMS switches with metal-metal contacts are being developed for microwave applications where broadband, high linearity performance is required. These switches provide less than 0.2 dB insertion loss through 40 GHz. This paper describes the integration of these switches into selected microwave components such as reconfigurable antenna elements, tunable filters, switched delay lines, and SPDT switches. Microwave and millimeter wave measured results from these circuits are presented

    Application of Memristors in Microwave Passive Circuits

    Get PDF
    The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    Novel design procedure for microwave filters

    Get PDF
    In this paper a novel design procedure is described for the hardware implementation of microwave filters. The procedure is based on a very accurate and efficient software package for the full-wave simulation of the structure and consists of a step-by-step procedure that systematically leads to dimensioning of the mplete filter geometry. Following the procedure described, each successive step only involves the dimensioning of a maximum of four physical parameters. As an illustrative example, the design of a nine pole non-uniform filter is discussed indicating how the procedure is indeed very efficient
    corecore